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Background and Motivation

Hanbury-Brown–Twiss (HBT) interferometry (also, ’intensity
interferometry’ or ’femtoscopy’) relies on two-particle
momentum correlations to study the geometric and flow
properties of heavy-ion collisions:

azimuthally-sensitive HBT analyses communicate
important information about deformations in the structure
of the freeze-out surface

odd harmonics present in HBT radii known to open the
window to the study of event-by-event fluctuations

fulfills a vital role in constraining the initial state of the
fireball and its subsequent evolution
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Part 1: 3rd order HBT
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HBT Basics

Two particles: ~p1, ~p2 −→ ~q ≡ ~p1 − ~p2, ~K ≡
1

2
(~p1 + ~p2)

Correlation function: C (~p1, ~p2) ≡
Ep1Ep2

dN
d3p1d3p2(

Ep1
dN
d3p1

)(
Ep2

dN
d3p2

)
Ignoring final-state interactions, C may be fit to the form:

C (~q, ~K ) = 1± λ(~K ) exp

− ∑
i ,j=o,s,l

R2
ij (
~K )qiqj

 ,

R2
ij = R2

ij (|~K |,ΦK )→ measure ΦK with respect to what?
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Fourier moments of R2
ij (
~K )

Experimentally, one measures HBT correlations as a
function of the difference between ΦK and one of the flow
angles Ψn

⇒ we plot observable quantities against ΦK −Ψn,
(n = 1, 2, 3, . . .)
The flow angle is defined by Ψn in vne inΨn ≡

〈
e inφp

〉
The vn are the anisotropic flow coefficients and φp is the
azimuthal angle of ~pT of the emitted particles in the lab
frame
⇒ Fourier-decompose the R2

ij :

R2
ij (|~K |,ΦK ) = 2

∞∑
n=1

(
R

2(c)
ij ,n (|~K |) cos[n(ΦK −Ψn)]

+ R
2(s)
ij ,n (|~K |) sin[n(ΦK −Ψn)]

)
+ R2

ij ,0(|~K |)
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PHENIX data

T. Niida, (QM 2012, arXiv:1304.2876) (integrated over K⊥)

Important features to understand:

Different signs of Fourier coefficients in out and side
directions
Different oscillation amplitudes: R2

o,n/R2
s,n � 1
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Emission function

We define the emission function S(x ,K ) as the Wigner density
of the fireball

Emission function:

∫
d4x S(x ,K ) = EK

dN

d3K

Taking λ(~K ) = 1, C and S may be related by

C (~q, ~K ) ≈ 1 +

∣∣∣∣∫ d4x eiq·xS(x ,K )∫
d4x S(x ,K )

∣∣∣∣2
For Gaussian sources S(x ,K ), R2

ij = 〈(x̃i − βi t̃)(x̃j − βj t̃)〉,
where

x̃i ≡ xi − 〈xi 〉 , t̃ ≡ t − 〈t〉 , ~β ≡ ~K/K 0 and

〈f (x)〉 ≡
∫
d4x f (x)S(x ,K)∫
d4x S(x ,K)

⇒ given S(x ,K ), R2
ij (
~K ) may be computed directly
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Emission function

Consider S with two kinds of different triangular
deformations:

”Geometric case” - Triangular spatial deformation with
radial flow, no triangular flow
”Flow case” - Triangular flow, no spatial deformation

Can obtain triangular oscillations of R2
ij from

triangular flow deformation
triangular spatial deformation coupled to radial flow
combinations thereof

8 / 29



Hanbury
Brown-Twiss

(HBT)
interferometry

with
event-by-event

fluctuations

Christopher J.
Plumberg

In
collaboration
with Chun
Shen and

Ulrich Heinz
(arXiv:1306.1485)

HBT oscillation amplitudes: two examples

Geometric case Flow case
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Part 1: Conclusions

Without radial flow, a triangular spatial deformation of the
source at freeze-out leaves no measurable trace in the
HBT radii oscillations

Triangular oscillations of HBT radii may generally result
from an admixture of triangular collective flow and
triangular spatial deformation coupling to radially
symmetric flow

We can distinguish ”flow domination” from ”geometry
domination” by the phases and KT -dependence of the
respective oscillation amplitudes; PHENIX data appear to
point to ”flow domination”
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Part 2:

Event-by-event hydrodynamics
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Next steps...

Our analysis assumed Gaussian, ensemble-averaged ansatz for
S(x ,K )
⇒ what do we find in an event-by-event (EBE) hydrodynamic
treatment?

Construct (viscous) hydrodynamic emission function using
Cooper-Frye formula:

Shydro(x ,K ) =
1

(2π)3

∫
Σ(xf )

K · d3σ(xf )δ4(x − xf )f (xf ,K ),

f (x ,K ) = f0 + δf

=
1

e(K ·u−µ)/T ± 1
+
χ(K 2)KµKνπµν

2T 2(e + p)
f0(1± f0)
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How are our results affected by ensemble-averaging?

13 / 29



Hanbury
Brown-Twiss

(HBT)
interferometry

with
event-by-event

fluctuations

Christopher J.
Plumberg

In
collaboration
with Chun
Shen and

Ulrich Heinz
(arXiv:1306.1485)

Next steps...

Our analysis assumed Gaussian, ensemble-averaged ansatz for
S(x ,K )
⇒ what do we find in an event-by-event (EBE) hydrodynamic
treatment?

Construct (viscous) hydrodynamic emission function using
Cooper-Frye formula:

Shydro(x ,K ) =
1

(2π)3

∫
Σ(xf )

K · d3σ(xf )δ4(x − xf )f (xf ,K ),

f (x ,K ) = f0 + δf

=
1

e(K ·u−µ)/T ± 1
+
χ(K 2)KµKνπµν

2T 2(e + p)
f0(1± f0)

How are our results affected by ensemble-averaging?

How should one extract HBT radii from a non-Gaussian source?
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(At least) 3 Ways of getting HBT radii

Option 1: compute R2
ij from Shydro via source variances,

R2
ij = 〈(x̃i − βi t̃)(x̃j − βj t̃)〉 = − 1

2(C − 1)

∂2C

∂qi∂qj

∣∣∣∣
q→0

Option 2: Construct C (q,K ) from Shydro → extract R2
ij

from Gaussian fit to correlator,

C − 1 ∼ exp
(
−
∑

i ,j R2
ijqiqj

)
Option 3: Construct C (q,K ) from Shydro → extract R2

ij

from ”q-moments method”:

1

2

(
R−1

)
ij

=

∫
d3q qiqj (C − 1)∫

d3q (C − 1)
, where R ≡

(
R2
ij

)
(K )
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Comparison of HBT methods

+++
+

+
+

+

+

+
+

+
++++++++++

Source variances

Gaussian fit

q-moments

q

C-1
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Results
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Hydrodynamic approach

K⊥-dependence of R2
ij ,3 from hydrodynamics
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2
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2

Ros,3
2
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Hydrodynamic approach

M⊥-dependence of R2
s,3/R2

s,0 from hydrodynamics1

Bozek H3+1D, GFL
PHENIX

VISH2+1 H2+1D, SVL

200 400 600 800 1000

-0.10

-0.05

0.00

0.05

MÞ HMeVL

HR s
2 L ,3�

HR s
2 L ,0

1arXiv:1401.7680, arXiv:1401.4894
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Hydrodynamic approach

M⊥-dependence of R2
o,3/R2

o,0 from hydrodynamics2
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Hydrodynamic approach

M⊥-dependence of R2
os,3/R2

s,0 from hydrodynamics3

Bozek H3+1D, GFL
PHENIX HextractedL
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3arXiv:1401.7680, arXiv:1401.4894
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Part 2: Conclusions

VISH2+1 qualitatively reproduces general trends of
PHENIX data

Qualitative features of K⊥-dependence of hydrodynamic
R2
ij ,3 similar to toy model for small K⊥, more discrepancies

at K⊥ & 0.3 GeV

Subtleties involving ensemble-averaging and the
construction of the correlation function have not been
addressed here
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Thanks for your attention!

Thanks also to my collaborators

Ulrich Heinz and Chun Shen!
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Double-Fourier formalism

Define

S`,m ≡ e−imΨ3

∫ π

−π

dφ

2π
ei`φ

∫ π

−π

dΦK

2π
eimΦK S(φ,ΦK ),

−→ Z` ≡ e−i`Ψ3

∞∑
m=−∞

S`,m−`e
−im(ΦK−Ψ3) ≡ X` + iY`

We can show, e.g.,〈
x2
s

〉
=

∫ ∞
−∞

dη

∫ ∞
0

τdτ

∫ ∞
0

r drπr 2 (X0 −X2)

〈xs〉 =

∫ ∞
−∞

dη

∫ ∞
0

τdτ

∫ ∞
0

r dr2πrY1

Since R2
s =

〈
x2
s

〉
− 〈xs〉2, no dependence on ` ≥ 3

(similarly for other R2
ij )!

N.B.: same expression contains all orders in ΦK
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Toy model for the source

S(x ,K ) =
S0(K )

τ
exp

[
− (τ − τf )2

2∆τ 2
− (η − η0)2

2∆η2

− r 2

2R2

(
1 + 2ε̄3 cos(3(φ− ψ̄3))

)
− M⊥

T0
cosh(η − Y ) cosh ηt +

K⊥
T0

cos(φ− ΦK ) sinh ηt

]
where

ηt =
ηf r

R

(
1 + 2v̄3 cos(3(φ− ψ̄3))

)
ε̄3: triangular azimuthal deformation

v̄3: triangular flow deformation

ηf : collective radial flow rapidity

ψ̄3: triangular flow velocity angle, points in direction of largest flow
rapidity and steepest descent of spatial density profile (note:
Ψn 6= ψ̄n in general)
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